Diaphragm-type accumulator

RE 50150/11.07 Replaces: 02/05

1/24

Type HAD

Component series 1X and 2X Nominal capacity 0.075 to 3.5 liters Maximum operating pressure 350 bar

Table of contents

Content Page Features 1 2 Ordering code 3 Operating instructions and conformity declarations 3 Function, section, symbol Technical data 4 5 Application, operating principle 5 to 10 Calculation Unit dimensions 70 to 250 bar 11 Unit dimensions of standard types 70 to 250 bar 12 to 14 Unit dimensions of US standard types 15, 16 Unit dimensions of standard types 350 bar 17, 18 Accessories 19 to 21 Safety notes on hydraulic accumulators 22 22, 23 Legal stipulations Safety equipment 23 Commissioning, maintenance 23, 24

Features

- Hydraulic accumulator according to Pressure Equipment Directive 97/23/EC
- Diaphragm material for different applications

Note

Pressure Equipment Directive 97/23/EC of the European Parliament and the Council of 29th May 1997 on the harmonization of the laws of the member states has been in force since 29th November, 1999. Since 29th May, 2002 hydraulic accumulators may exclusively be placed on the market in a accordance with this Directive.

Diaphragm-type accumulators up to and including 1 liter
The CE Directive has been implemented since November 2001.
The accumulators must, however, not be CE-marked. User instructions no. 1 539 929 064 accompany every shipping batch.

Diaphragm-type accumulators greater than 1 liter

The CE Directive has been implemented since November 2001. The accumulators must be CE-marked. They are shipped with operating instructions and a conformity declaration for each series. The conformity declaration includes technical data of the accumulators. The documents accompany each shipping batch.

Ordering code

1				Ι.	\neg
	Capacity	Permissible max		Certification	
	2.075	operating pressur		Acceptance	
	0.075 0.16	250 250	1X 1X	BA BA	_
	0.16	210	1X	BA	
•	0.00	160	1X		
	0.5	250	2X	BA	
		100	1X		
	0.7	180	1X	ВА	
		250	1X	1	
		350	2X	1	
	1.0	200	1X	BA	
		140	1X		
	1.4	250	1X	CE	
		350	2X		
	0.0	100	1X	05	
	2.0	250 350	1X 2X	CE	
•		70	1X		
	2.8	250	1X	CE	
		350	1X		
		250	1X		
	3.5	350	1X	CE	
					_
	lΓ				
HAD)	'	-	1 1	<u> </u>
Commonant covice		 			Further details
Component series	= 1				in clear text
Component series 10 to 19 Component series 20 to 29	= 2				e.g. special variants
(unchanged installation and	= 4	² ^			Certification (acceptance)
connection dimensions)					CE = Acceptance according
· · · · · · · · · · · · · · · · · · ·					to 97/23/EC
Precharge pressure 0 to 250 bar					BA = Operating instructions
E.g. 10 bar		= 10			Surface of the connection side
	1)	_ 10			1 = Steel
Connection size for hydrau	ilic fluid "	704			2 = Galvanized steel
M14x1.5		= Z04			Surface of the tank interior
M18x1.5		= Z06			1 = Steel
M22x1.5		= Z08			2 = Galvanized steel
G 1/4 G 3/8		= G02 = G03			Tank material
G 1/2		= G03 = G04			Steel
G 3/4		= G04 = G05		1=	
G 1		= G05 = G06			Diaphragm material
3/4 – 16 UNF		= U04		N =	NBR
1 1/16 – 12 UNF		= U04 = U06		E = I =	ECO IIR
3/8 NPTF		= F02		F=	FKM
1/2 – 14 NPTF		= F02 = F08		• –	
					Form of gas connection
Type of mounting (form of	oil connect		0	= =	Standard variant for 0 538 103 012 Gas valve for 0 538 103 011
Mounting cavity			-	=	Not re-chargable, gas side welded
Mounting cavity with hexago			- L		Tiot to originatio, gas side wolded
Stud ends with female threa	d		= E 1)	urther connecti	on sizes on request
Stud ends	1 -1 -1		·	artifer Connecti	on sizes on request
Stud ends M45x1.5 with fen	nale thread	=	= E5		For standard types, see pages 12 to 18
Special variants on request					

Operating instructions and conformity declarations

	Mater	ial no.
Series	Operating instructions	Conformity declaration
Up to 1.0	1 539 929 064	_
1 .4/140	1 539 929 065	1 539 929 071
1.4/250	1 539 929 066	1 539 929 072
1.4/350	R901067048	R901067054
2.0/100	1 539 929 067	1 539 929 073
2.0/250	1 539 929 068	1 539 929 074
2.0/350	R901067049	R901067055
2.8/70	1 539 929 069	1 539 929 075
2.8/250	1 539 929 070	1 539 929 076
2.8/350	R901067050	R901067057
3.5/250	R901165521	R901165528
3.5/350	R901067051	R901067058

Function, section, symbol

General

One of the main tasks of hydraulic accumulators is, for example, to absorb a certain volume of a pressurized fluid from a hydraulic system and return it to the system when required.

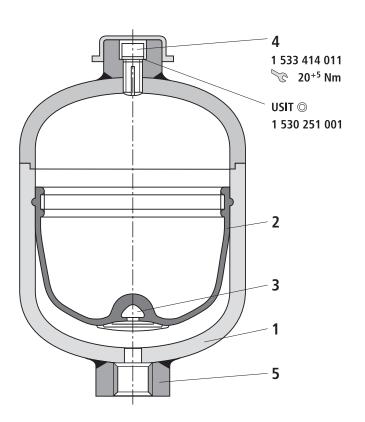
Because the fluid is pressurized, hydraulic accumulators are regarded as pressure vessels and must be rated for the maximum operating pressure taking account of acceptance standards valid in the country of installation.

In most of the hydraulic systems, hydropneumatic (gascharged) accumulators with separating element are used.

Depending on the design of the separating element, we distinguish between bladder-type, piston and diaphragm-type accumulators.

Hydraulic accumulators basically consist of a fluid and a gas section with a gas-tight separating element. The fluid section is connected with the hydraulic circuit. As the pressure rises, the

- 1 Vessel
- 2 Diaphragm
- 3 Closing poppet
- 4 Plug screw (gas filling screw)
- 5 Fluid connection


Symbol

gas is compressed and fluid gets into the hydraulic accumulator. As the pressure falls, the compressed gas expands and displaces the accumulated fluid into the circuit.

Diaphragm-type accumulators

Diaphragm-type accumulators consist of a pressure-tight steel vessel (1), which is, in most of the cases, of spherical to cylindrical shape. A diaphragm (2) made of an elastic, flexing material (elastomer) with closing poppet (3) and plug screw (4) is provided as separating element in the interior of the accumulator. These elements comply with Directive 97/23/EC.

Technical data (for applications outside these parameters, please consult us!)

General											
Weight	kg	See tab	e tables on pages 11, 17, 18								
Design		Diaphra	phragm-type accumulator, welded								
Installation position		Optiona	l, prefera	bly fluid o	connectio	n piece p	ointing d	ownward	s		
Type of mounting		With cla	clamps or threaded connection								
Ambient temperature range	°C	−15 to +	⊦65 ¹⁾								
Pipe connection		Female ·	thread								
Hydraulic											
Capacity	I	0.075	0.16	0.35	0.5	0.7	1.0	1.4	2.0	2.8	3.5
Effective gas volume	I	0.075	0.16	0.32	0.48	0.75	1.0	1.4	1.95	2.7	3.5
Permissible max. flow	l/min	1	0			40			6	60	60
Permissible max. operating bar pressure <i>p</i>	bar					100				70	
				210	160	180		140	100		
		250	250	207	207	250	200	250	250	250	250
					250	350		350	350	350	350
Permissible max. pressure	bar					93				50	
fluctuation width Δp dyn.				90	90	93		80	65		
		150	120	120	120	140	115	140	140	130	130
					100	130		130	130	130	130
Operating pressures and useful ca	pacity	See Cal	lculation	on pages	5 to 10						
Hydraulic fluid		Hydrauli	ic oil to D	IN 51524	1; other fl	uids on re	equest!				
Hydraulic fluid temperature rang Others on request	ge °C	C -10 to +80 (NBR diaphragm) ¹⁾ -35 to +80 (ECO diaphragm) ¹⁾									
Pneumatic											
Charge gas		Use only	y nitroger	n!							
Charge pressure p_0		See Sta	ındard typ	oes on pa	iges 12 to	18					

Usable hydraulic fluids

When selecting the accumulator variant, observe the following non-binding notes with regard to hydraulic fluid, bladder or dia-

Hydraulic fluids	Temperature range	Material
Mineral oils	−10 to +80 °C −35 to +80 °C	NBR ECO
HFA, HFB ²⁾	+5 to +50 ℃	NBR
HFC	−10 to +60 °C	NBR, IIR
HFD ³⁾	−10 to +60 °C −10 to +80 °C	IIR FKM
Water ²⁾	+5 to +50 ℃	NBR
Diesel, fuel oil	−10 to +50 °C	NBR
Heavy fuel oil	−10 to +100 °C	FKM
Regular-grade gasoline	−10 to +40 °C	NBR
Premium gasoline	−10 to +40 °C	FKM
Kerosene	−10 to +40 °C	NBR

phragm material, and the permissible temperature range.

No warranty claims may be derived from these recommendations.

In the case of other hydraulic fluids and temperatures, please consult us.

NBR Acrylnitrile butadiene rubber (Perbunan)

FKM Fluorine rubber

IIR Butyl rubber

ECO Epichlorhydrin rubber

- The permissible temperature specified in the tank test is also revant
- 2) Special variants of tank and connection parts may be required
- ³⁾ Please consult us stating the detailed specification of the hydraulic fluid

Application, operating principle

Applications

Hydropneumatic accumulators can be used in a wide variety of applications:

- Energy storage for saving pump drive power in systems with intermittent operation.
- Energy reserve for emergency cases, e.g. in the event of a hydraulic pump failure.
- Compensation for losses due to leakage.
- Impact and vibration damping in the case of periodic oscillations.
- Volume compensation in case of changes in pressure and temperature.
- Suspension element on vehicles.
- Shock absorption in the case of mechanical impact.

Operating principle

Fluids are almost incompressible and can therefore not store pressure energy. In hydropneumatic Rexroth accumulators the compressibility of gases is utilized for storing fluids. Only neutral gases may be used, usually class 4.0 "nitrogen".

N₂ 99.99 % by volume

 O_2 50 vpm H_2O ca. 30 vpm.

Calculation

Pressures

For the calculation of an accumulator, the following pressures are of significance:

p₀ = gas precharge pressure at room temperature and drained fluid chamber

p_{OT} = gas precharge pressure at operating temperature

 p_1 = minimum operating pressure

 p_2 = maximum operating pressure

 $(p_{\rm m} = average operating pressure)$

To achieve the best possible utilization of the accumulator capacity and a long service life, it is recommended that the following values be adhered to:

$$p_0, t_{\text{max}} \approx 0.9 p_1$$
 (1

The highest hydraulic pressure should not exceed the quadruple of the precharge pressure; otherwise, the elasticity of the diaphragm is overstressed and excessive variations in the compression result in strong heating up of the gas. The smaller the difference between p_1 and p_2 the longer is the service life of the diaphragm. However, this also reduces the degree of utilization of the corresponding maximum accumulator capacity.

Diaphragm-type accumulators

 $p_2 \le 4 \cdot p_0 \tag{2}$

On request

 $p_2 \le 8 \cdot p_0$

Filling piece in diaphragm-type accumulators

To achieve an increased pressure ratio $(p_0:p_2>1:4)$ in the accumulator, a filling piece can be installed on the gas side of the accumulator.

This reduces the usable gas volume V_1 , but the diaphragm is protected against impermissible deformation.

Oil volume

Pressures $p_0 \dots p_2$ determine gas volumes $V_0 \dots V_2$.

Here, V_0 is also the nominal capacity of the accumulator.

The available oil volume Δ V corresponds to the difference beween gas volumes V_1 and V_2 :

$$\Delta V \le V_1 - V_2 \tag{3}$$

The gas volume, which is variable within a pressure differential, is determined by the following equations:

a) In the case of isothermal changes of state of gases, that is, when the gas buffer changes so slowly that enough time is available for a complete heat exchange between the nitrogen and its surroundings and the temperature therefore remains constant, the following is valid:

$$\rho_0 \cdot V_0 = \rho_1 \cdot V_1 = \rho_2 \cdot V_2 \tag{4.1}$$

rapid change of the gas buffer, in which the temperature of the nitrogen changes as well, the following is valid

b) In the case of an adiabatic change of state, that is, with a

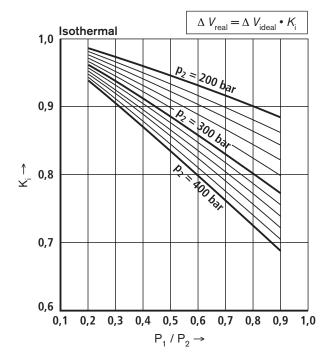
$$\rho_0 \cdot V^{\chi}_0 = \rho_1 \cdot V^{\chi}_1 = \rho_2 \cdot V^{\chi}_2$$
 (4.2)

 χ = ratio of the specific heat of gases (adiabatic exponent) for nitrogen = 1.4

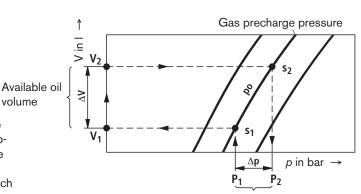
In practice, changes in state rather follow adiabatic laws. Charging is often isothermal, discharging adiabatic.

Taking account of equations (1) and (2), ΔV is 50 % to 70 % of the nominal accumulator capacity. The following can be applied as a rule of thumb:

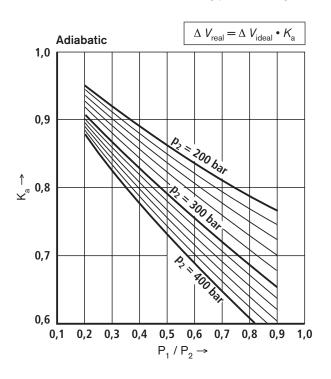
$$V_0 = 1.5 \dots 3 \times \Delta V$$
 (5)


volume

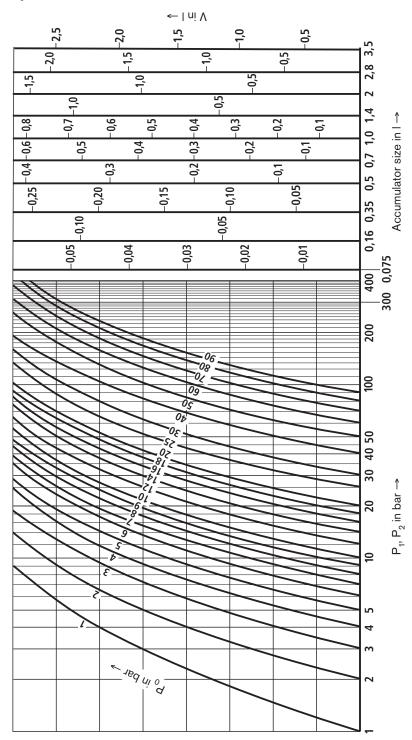
Calculation diagram


To allow a determination on the basis of a graphic representation, the formulas (4.1) and (4.2) were translated into diagrams on pages 7 to 10. Depending on the task at hand, the available oil volume, the accumulator size or the pressures can be established.

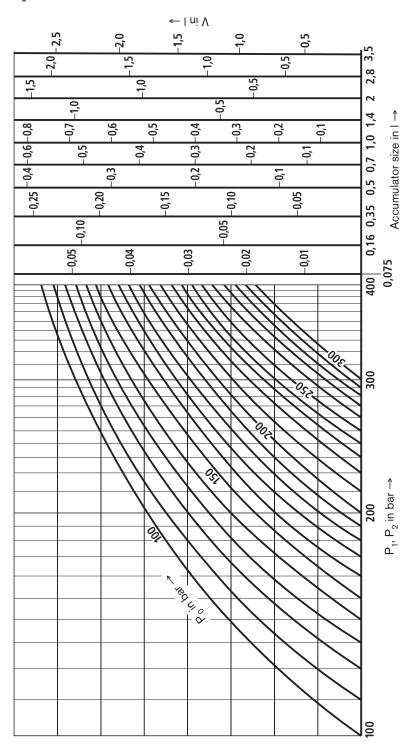
Correction factors K_i and K_a


Equations (4.1) and (4.2) are only valid for ideal gases. In the characteristics of real gases, significant deviations can be observed at operating pressures above 200 bar, which must be taken into account by applying correction factors. These are shown on the following diagrams. The correction factors which are to be multiplied by the ideal withdrawal volume Δ V are within the range of 0.6 ... 1.

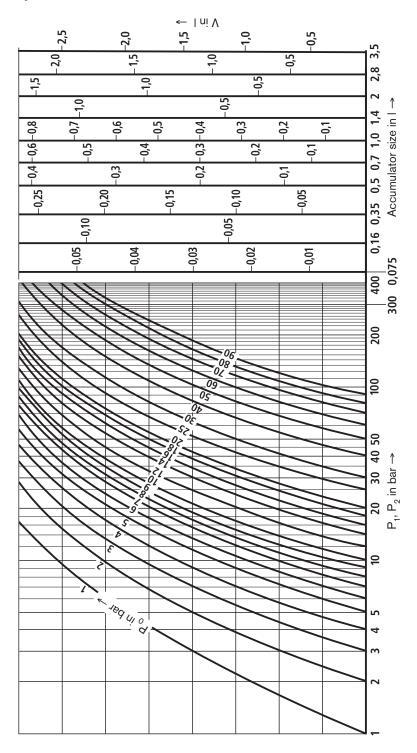
Application of the calculation diagrams



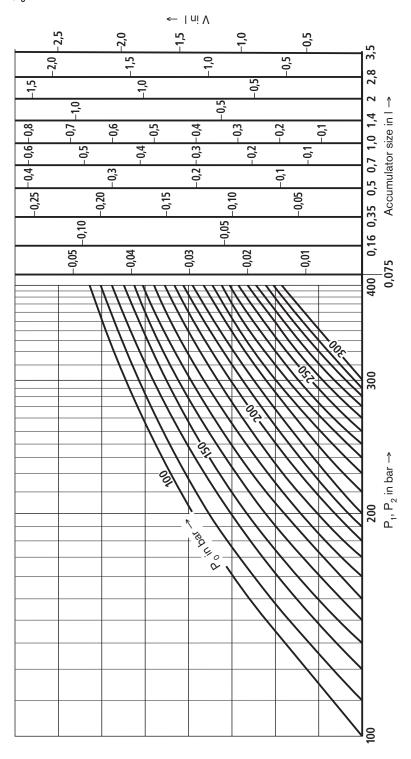
Working pressure range


Isothermal changes of state

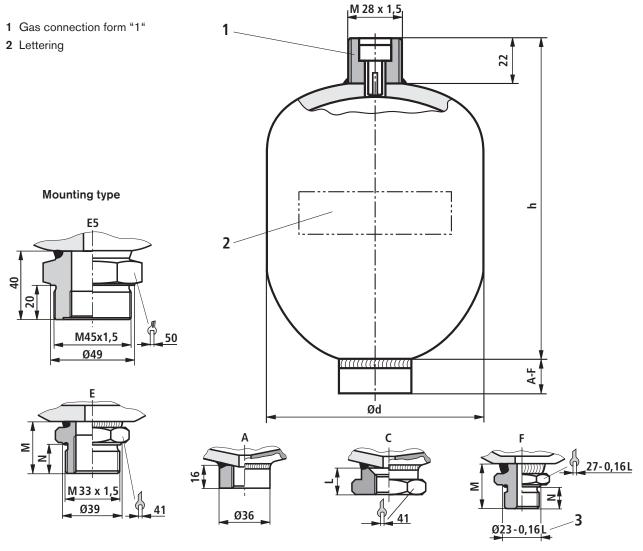
 $p_0 = 1$ to 90 bar


Isothermal changes of state

 $p_0 = 100 \text{ to } 300 \text{ bar}$

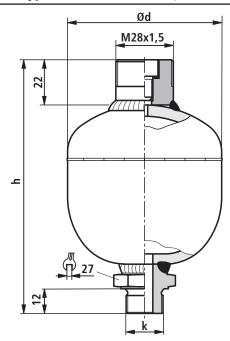

Adiabatic changes of state

 $p_0 = 1$ to 90 bar

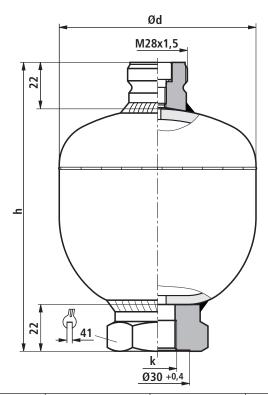


Adiabatic changes of state

 $\rho_0 = 100 \text{ to } 300 \text{ bar}$

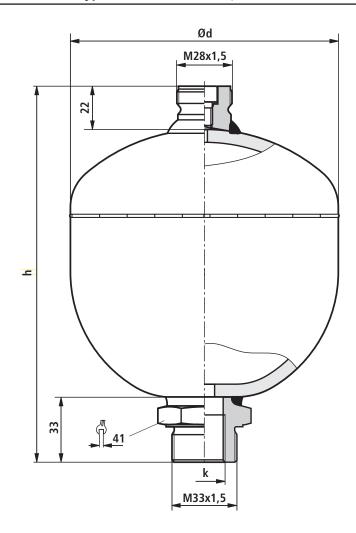


Unit dimensions: 70 to 250 bar (dimensions in mm)



Type/V in liters	p _{max} in bar	Ød	h	L	M	N	Weight in kg
HAD0.075	250	64	91	20	21.5	12	0.65
HAD0.16	250	75	99.5	20	24	12	1.0
HAD0.35	210	92	114	22	33	18	1.3
LIADOF	160	103	127	22	_	_	1.6
HAD0.5	250	106	130	20	27	12	2.0
LIADOR	180	121	144	22	33	18	2.6
HAD0.7	250	123.6	144	22	33	18	3.2
HAD1.0	200	136	158	22	33	18	3.5
LIAD4 4	140	147	169	22	33	18	4.9
HAD1.4	250	152	173	22	33	18	6.2
LIADOO	100	144	218	22	33	18	4.0
HAD2.0	250	155	229	22	33	18	9.5
LIADOO	70	160	247	21	33	18	5.5
HAD2.8	250	174	247	21	33	18	10.0
HAD3.5	250	174	285	21	33	18	14.0

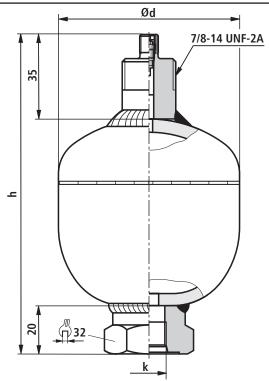
Unit dimensions of standard types: 160 to 250 bar; 0.075 to 0.5 liters (dimensions in mm)



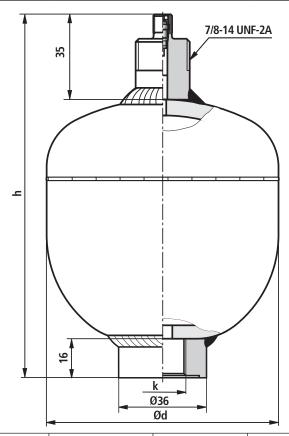
Ordering code / type	Volume in liters	Material no.	h	Ød	k
HAD0,075-250-1X/2Z04F-1N111-BA	0.075	R901183242	112.5	65.5	M14x1.5
HAD0,16-250-1X/2Z06F-1N111-BA	0.16	R901183248	123.5	76.5	M18x1.5


Ordering code / type	Volume in liters	Material no.	h	Ød	k
HAD0,35-210-1X/2Z06C-1N111-BA	0.35	R901183250	136	94.3	
HAD0,5-160-1X/2Z06C-1N111-BA	0.5	R901183251	149	104.8	M18x1.5
HAD0,5-250-2X/2Z06C-1N111-BA	0.5	R901183253	152	108.5	

Unit dimensions of standard types: 100 to 250 bar; 0.7 to 1.4 liters (dimensions in mm)

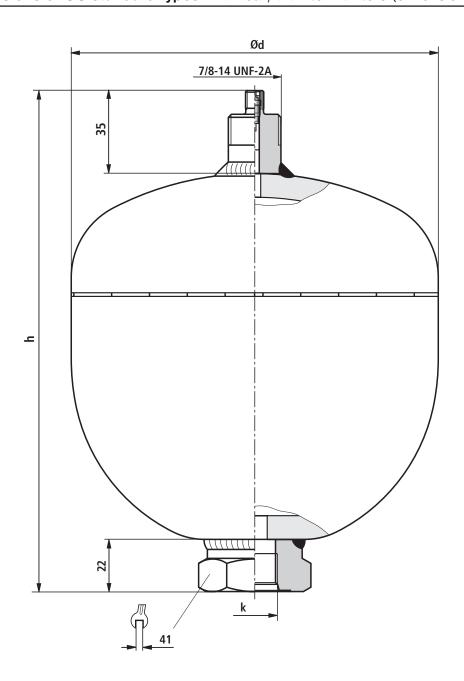

Ordering code / type	Volume in liters	Material no.	h	Ød	k
HAD0,7-100-1X/2G04E-1N111-BA	0.7	R901164364	172	118.8	
HAD0,7-210-1X/2G04E-1N111-BA	0.7	R901164365	177	123.5	
HAD1,0-200-1X/2G04E-1N111-BA	1.0	R901164367	191	138.5	G 1/2"
HAD1,4-140-1X/2G04E-1N111-CE	1.4	R901164368	202	149.6	
HAD1,4-250-1X/2G04E-1N111-CE	1.4	R901164369	206	152	

Unit dimensions of standard types: 100 to 250 bar; 2.0 to 3.5 liters (dimensions in mm)

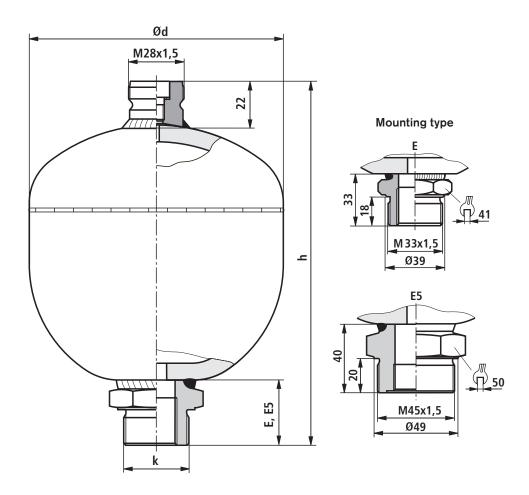


Ordering code / type	Volume in liters	Material no.	h	Ød	k
HAD2,0-100-1X/2G05E5-1N111-CE	2.0	R901164371	258	147.2	
HAD2,0-250-1X/2G05E5-1N111-CE	2.0	R901164372	269	158.6	G 3/4"
HAD2,8-250-1X/2G05E5-1N111-CE	2.8	R901164374	286	177.5	
HAD3,5-250-1X/2G05E5-1N111-CE	3.5	R901164376	325	177.5	

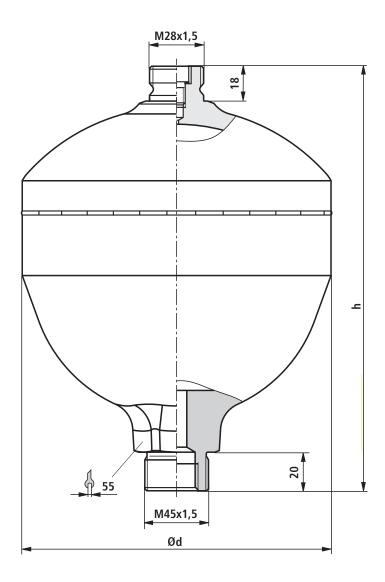
Unit dimensions of US standard types: 207 to 250 bar; 0.075 to 0.35 liters (in mm)



Ordering code / type	Volume in liters	Material no.	h	Ød	k
HAD0,075-250-1X/0U12C-2N111-USA	0.075	0531610632	125.8	65.5	0/40 40 UNE 0D
HAD0,16-250-1X/0U12C1-2N111-USA	0.16	0531600611	132.3	76.5	9/16-18 UNF-2B


Ordering code / type	Volume in liters	Material no.	h	Ød	k
HAD0,35-207-1X/0U04A-2N111-USA	0.35	0531601572	150.5	96.5	3/4-16 UNF-2B

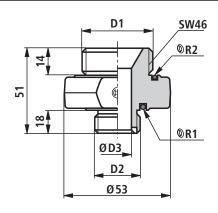
Unit dimensions of US standard types: 207 bar; 0.07 to 2.8 liters (dimensions in mm)


Ordering code / type	Volume in liters	Material no.	h	Ød	k
HAD0,7-207-1X/0U04C-2N111-USA	0.7	0531602588	186	128.5	
HAD1,4-207-1X/0U04C-2N111-USA	1.4	0531603501	212.8	156.5	3/4-16 UNF-2B
HAD2,0-207-1X/0U04C-2N111-USA	2.0	0531623500	265.8	156.5	3/4-16 UNF-2B
HAD2,8-207-1X/0U04C-2N111-USA	2.8	0531613503	282.5	175.5	

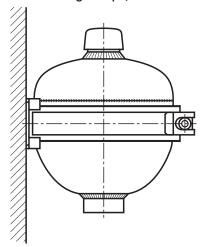
Unit dimensions of standard types: 350 bar; 0.7 to 2.0 liters (dimensions in mm)

Ordering code / type	Volume in liters	Material no.	Ød	h	k	Weight kg
HAD0,7-350-2X/2G04E-1N111-BA	0.7	R901164366	128.5	184	E	4.0
HAD1,4-350-2X/2G04E-1N111-CE	1.4	R901164370	156	209	E	7.0
HAD2,0-350-2X/2G05E5-1N111-CE	2.0	R901164373	156	269	E5	9.5

Unit dimensions of standard types: 350 bar; 2.8 and 3.5 liters (dimensions in mm)


Ordering code / type	Volume in liters	Material no.	Ød	h	Weight kg
HAD2,8-350-1X/2G05E5-1N111-CE	2.8	R901164375	180	285	13.0
HAD3,5-350-1X/2G05E5-1N111-CE	3.5	R901164377	180	325	16.0

Accessories (dimensions in mm)


Adapter for size 20 blocks

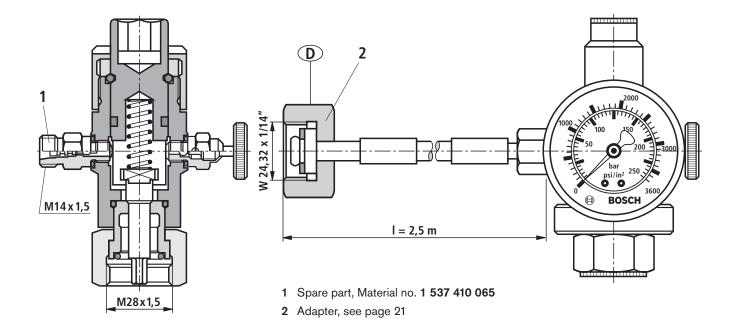
Connection A (accumulator)

Accumulator D1	Block D2	ØD3	Material no.
M 22 x 1.5		12	1 533 359 012
M 18 x 1.5	M 33 x 2	8	1 533 359 013
G 1/2 ISO 228		8	1 533 359 034

Holding clamps, selection table

Туре	Clamp type	Material no.
HAD0,075	HY/VGBKS 62- 65	1 551 316 024
HAD0,35	HY/VGBKS 92-97	1 531 316 017
HAD0,50	HY/VGBKS 101-111	1 531 316 018
HAD0,75	HY/VGBKS 119-128	1 531 316 015
HAD0,7	HY/VGBKS 128-136	R901073992
HAD1,0	HY/VGBKS 135-145	1 531 316 019
HAD1,4	HY/VGBKS 145-155	1 531 316 016
HAD2,0/100	HY/VGBKS 135-145	1 531 316 019
HAD2,0/250	HY/VGBKS 145-155	1 531 316 016
HAD2,8/70	HY/VGBKS 160-170	1 531 316 022
HAD2,8-3,5	HY/VGBKS 170-180	1 531 316 020

Charging and test device


Test case, complete	Material no.			
Bladder	0 538 103 011			
Diaphragm		0 538 103 012		
Bladder and diaphragm co	0 538 103 014			
Case		R901070141		
Charging and	Bladder	0 538 103 005		
test valve	Diaphragm	0 538 103 006		
Pressure gauge 0 to 250	1 537 231 001			
Hose I = 2,5 m with adapter piece form ②		1 530 712 005		

Accessory parts to be ordered separately	Material no.
Pressure gauge 0 to 25 bar	R900033955
Pressure gauge 0 to 60 bar	1 537 231 002
Pressure gauge 0 to 400 bar	1 537 231 005
Adapter piece Form ©	1 533 391 010
Form (B)	1 533 391 011
Form (SA)	1 533 391 012
Form @	1 533 391 013
Form @	1 533 391 014
Form (III)	1 533 391 015
Hose I = 5 m with adapter piece form ①	1 530 712 006

Accessories (dimensions in mm)

Dimensions of charging and test valve

1 valve body with check valve, discharge valve, pressure gauge connection, and gas hose connection.

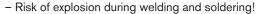
Accessories (dimensions in mm)

Adapter from nitrogen bottle to cap nut

Country	1 533 391 011	1 533 391 010	1 533 391 012	1 533 391 014	1 533 391 013	1 533 391 015
Brazil	х					
Bulgaria	х					
France		х				
Greece	х					
Great Britain	х					
India	х					
Japan				х		
Canada			х			
Korea North					х	
Korea South					х	
Malaysia	х					
Romania		х				
Russia						х
Spain	х					
Saudi Arabia		х				
Singapore	х					
Turkey	х					
USA			х			
Other countries	on request	•	•	•		

Safety notes on hydraulic accumulators

Before commissioning and during operation of hydraulic accumulators, observe the regulations valid at the place of installation.


The operator is solely responsible for observing applicable regulations.

General notes on hydraulic accumulators in hydraulic systems can be found in EN 982.

Documents included in the scope of supply must be properly kept; they are required by the surveyor for recurring inspections.

M Warning

Never carry out any welding, soldering or mechanical work on the accumulator vessel!

Risk of bursting and loss of the operating permission in the case of mechanical working!

Never charge hydraulic accumulators with oxygen or air. Risk of explosion!

Before carrying out any work on hydraulic systems, depressurize the system and secure it against restarting!

Improper mounting can lead to severe accidents!

Commissioning must exclusively by carried out by qualified personnel.

Legal stipulations

Hydraulic accumulators are pressure vessels and are subject to the national regulations and ordinances valid at the place of installation.

In Germany, the Health and Safety at Work Regulations (BetrSichV) must be complied with.

Special rules must be observed in the fields of shipbuilding, aircraft construction, mining, etc.

Dimensioning, manufacture and testing must be carried out in line with the codes according to AD 2000. Rules with regard to the erection, equipment and operation are laid down in the

"Technische Regeln Druckbehälter" (TRB) (technical rules for pressure vessels.

Vessel categories and tests/inspections in Germany

According to these German regulations, pressure vessels are categorized according to their capacity in L, the permissible operating pressure in bar, and the product of pressure and capacity $p \times L$. Depending on the category, specific inspections are compulsory.

An overview is given in the following table:

Vessel class	Initial test at the manufacturer's end	Acceptance test at the operator's end	Recurring inspections			
			Internal	Pressure	External	
II $\rho > 25$ bar; $\rho \cdot L \le 200$	0	0	0	0	0	
III $\rho > 1 \text{ bar}; \rho \cdot L > 200 \le 1000$	Х	Х	0	0	0	
IV $\rho > 1$ bar; $\rho \cdot L > 1000$	Х	Х	X 5 ¹⁾ / 10 ²⁾	X 10 ¹⁾	X 2 1)	

¹⁾ Years

X By surveyor

O By a technical expert

All vessel categories must be protected by means of a pressure relief valve in accordance with Directive 97/23/EC.

²⁾ Years in the case of non-corroding fluids

Legal stipulations

Classification societies

Initial inspections/tests, approvals and acceptances are carried out by surveyors. These are representatives of the following classification societies in the individual countries:

TÜV

GB LRIS

D.R.I.R.E.

B APRAGAZ

WA LRIS

Stoomwezen

① ISPESEL

® UDT

CH SVDB

Shipbuilding and offshore LRS = Lloyd's Register DNV = Det Norske Veritas GL = Germanischer Lloyd

ABS = American Bureau of Shipping

These bodies are registered with the EU in Bruxelles and, being "notified bodies", carry out the tests/inspections according to the Pressure Equipment Directive.

Moreover, there are classification societies (Germanischer Lloyd, Lloyd's Register, Det Norske Veritas, etc.) for ships and offshore applications.

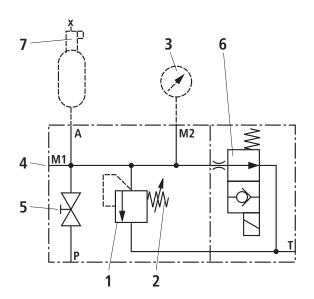
CE accumulators are shipped together with a declaration of conformity and operating instructions.

Technical experts

They are appointed by the plant of the operator and must be qualified accordingly.

In Germany, corresponding training courses are offered by classification societies.

Safety equipment


In the Federal Republic of Germany, regulations for the equipment, erection and operation of hydraulic accumulators are laid down in the "Technische Regeln Druckbehälter" (TRB) (technical rules for pressure vessels). These specify the following safety equipment:

- Features against excessive pressure (type-tested)
- 2 Unloading features
- 3 Pressure measuring instruments
- 4 Test pressure gauge connection
- 5 Shut-off feature

Option:

- 6 Electromagnetically operated unloading device
- 7 Safety device against excessive temperatures

These safety devices are combined in a compact Bosch Rexroth safety and shut-off block.

Commissioning, maintenance

Notes on commissioning

Precharge pressure

Diaphragm-type accumulators are usually delivered ready for operation. The precharge pressure (p_0) is embossed on the accumulator shell.

Charging gas

Hydraulic accumulators may only be filled with purest class 4.0 nitrogen, N2 99.99 % by volume.

Permissible operating temperature

In the "standard variant", Bosch Rexroth hydraulic accumulators are suitable for operating temperatures from -10 to +80 °C. In the case of differing temperatures, please consult us.

Installation position

Diaphragm accumulators can be installed in optional orientation. For the test and charging device, a free installation space of 200 mm must be provided above the gas valve.

Mounting

The accumulator must be mounted so that in the case of vibration caused during operation or a possible rupture of the pipe or gas pipe, the accumulator is safely held in position.

No holding forces may be introduced above the oil and gas connection.

Bosch Rexroth offers corresponding holding clamps (see page

Commissioning, maintenance

Charging of the accumulator

Use the Bosch Rexroth filling and test device for charging the accumulator (see pages 19, 20).

Observe the relevant notes in operating instructions 1 539 929 010.

Note

The precharge pressure changes as the gas temperature changes. After charging or discharging nitrogen, wait until the temperature has balanced before you check the gas pressure.

Maintenance

General

After having been charged with gas, Bosch Rexroth accumulators are largely maintenance-free.

To ensure trouble-free operation and a long service life, the following maintenance work must be carried out:

- Check the gas precharge pressure
- Check safety equipment and fittings
- Check pipe connections
- Check mounting of accumulator.

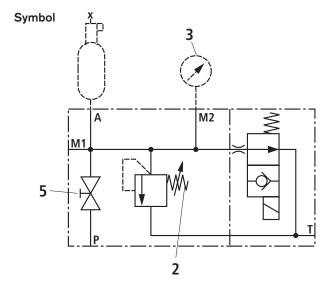
Checking the gas pre-charge pressure

Inspection intervals

After commissioning of the accumulator, the charge pressure must be checked at least once in the first week. If no loss of gas is detected, the second inspection must be made after 3 months. If the pressure is still unchanged, you can check the pressure once a year.

Measurements on the fluid side

Connect a pressure gauge to the accumulator by means of a line. Alternatively, the pressure gauge can be connected directly at the vent point.


Proceeding:

- Fill hydraulic fluid into the accumulator.
- Close shut-off valve (5).
- Let the hydraulic fluid drain slowly (temperature balancing) by opening discharge valve (2).
- Observe pressure gauge (3) during the draining process. As soon has the charging pressure is reached in the accumulator, the pointer abruptly falls to zero.

If deviations are measured, first check whether:

- pipes and fittings are leak-free,
- these deviations can be traced back to differing ambient and gas temperatures.

Only when no faults are detected here is an inspection of the accumulator required.

Bosch Rexroth AG
Hydraulics
Zum Eisengießer 1
97816 Lohr am Main, Germany
Phone +49 (0) 93 52 / 18-0
Fax +49 (0) 93 52 / 18-23 58
documentation@boschrexroth.de

© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent.

The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.